
Naval Research Laboratory 
Washington, DC 20375-5320 

NRL/FR/5740-98-9887 

Kaiman Filter Predictor and Initialization 
Algorithm for PRI Tracking 

MELINDA HOCK 

Surface Electronic Warfare Systems Branch 
Tactical Electronic Warfare Division 

June 15,1998 

19980716 027 
Approved for public release; distribution is unlimited. 

ySlCtTALliY JÄWHÄA i 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

June 15, 1998 

3. REPORT TYPE AND DATES COVERED 

Interim, January - August 1997 

4. TITLE AND SUBTITLE 

Kaiman Filter Predictor and Initialization Algorithm for PRI Tracking 

6. AUTHOR(S) 

Melinda Hock 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Research Laboratory 
Washington, DC 20375-5320 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 
800 North Quincy Street 
Arlington, VA 22217-5660 

5. FUNDING NUMBERS 

PE 63270N 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NRL/FR/5740--98-9887 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

13. ABSTRACT {Maximum 200 words) 

12b. DISTRIBUTION CODE 

A pulse repetition interval (PRI) tracking algorithm has been developed for staggered PRI sequences. The algorithm is intended 
for use in electronic countermeasures applications. It processes time of arrival (TOA) measurements from an electronic support 
receiver and outputs TOA predictions with associated variances to an electronic attack system. The algorithm uses a Kaiman filter for 
prediction combined with a preprocessing routine to determine the period of the stagger sequence and to construct an uncorrupted 
data set for Kaiman filter initialization. It is robust to missing and/or spurious pulses, intentional or unintentional jitter, and measure- 
ment noise. 

14. SUBJECT TERMS 

PRI tracking 
Kaiman filter 
Staggered PRI 

Pulse trains 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

15 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std 239-18 
298-102 



KALMAN FILTER PREDICTOR AND INITIALIZATION 
ALGORITHM FOR PRI TRACKING 

INTRODUCTION 

The problem considered in this report is pulse repetition interval (PRI) tracking. PRI is the time 
interval between two pulses emitted by a radar. A radar may have a constant PRI, or it may have some 
form of PRI agility, in which case the time interval between pulses varies on a pulse-to-pulse basis. 
Currently, a large number of anti-ship missiles use radar as the homing device. Some currently have 
PRI agility. However, future threats in this category are expected to be both PRI and frequency agile. 

A PRI tracking algorithm is needed as the basis for a deceptive countermeasures technique. When 
an emitter has been selected for deceptive countermeasures, the PRI tracker should predict the PRI or, 
equivalently, the pulse time of arrival (TOA) of the next pulse so that a jamming pulse can be gated on 
at that time. In addition to predicting the next pulse TOA, the algorithm should also generate a measure 
of the variance of the prediction. The variance of the prediction, along with the measured pulse width, 
is used to control the width of the jamming pulse. It is important to keep the jamming pulse length as 
short as possible. When the variance of the prediction is small, the jamming pulse length approaches 
the received pulse width. This allows two significant operational advantages. First, the ECM 
transmitter can be time multiplexed to handle multiple incoming threats simultaneously. Second, 
ownship RFI problems are minimized. 

The three most common types of PRI agility are staggered PRIs, sinusoidally modulated PRIs, and 
PRIs with random jitter [1]. This report considers the staggered PRI case. Additional work is currently 
underway to develop algorithms to handle the other cases, and this will be the topic of a future report. 
A staggered PRI is a sequence of several different pulse intervals in a repeating pattern. For example, 
the sequence {211,400,400,400,315,211,400,400,400,315,...} has three distinct pulse intervals and a 
period of five. It is referred to as a three-element, five-position stagger with stagger elements of 211, 
400, and 315. Figure 1 illustrates this pulse train. 
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Fig. 1 — Three-element, five-position staggered pulse train 
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ASSUMPTIONS 

In designing the algorithm, the following assumptions were made: 

1. Emitters of concern are specified by the electronic attack (EA) system for tracking. 

2. For each specified emitter, a group of pulses is accumulated in a buffer for initialization. 

3. An electronic support (ES) receiver has sorted PRI measurements so that all measurements in a 
given buffer will, in theory, come from the same emitter. However, since all ES systems make 
mistakes, the sorting process is not perfect. As a result, missing and/or spurious pulses as well 
as jitter and measurement noise may corrupt the PRI sequence in the buffer. 

4. After initialization, pulses are received at the per-pulse data rate of 100 to 10,000 pulses per 

second. 

5. The per-pulse data stream contains pulses from a single emitter, but missing and/or spurious 
pulses, jitter, and measurement noise may corrupt the data stream. 

DATA SIMULATION 

Because no measured per-pulse data were available, all of the data used for testing was simulated. 
Simulated data consist of TOAs and PRIs written to a file. Two PRI sequences were used for testing: a 
32-position, 16-level stagger sequence, and a 14-position, 5-level stagger sequence. 

Because measurements received from the ES system will be corrupted by jitter and missing pulses, 
it was necessary to model these effects in the simulated data. Jitter was accounted for using the 
following cumulative model [2]: 

TOAj=TOAj_l+PRIj + wJ       Wj~N(0,ow) 

Xj = TOAj + vj vj ~ N(0,c2
v), 

where TOA, is the time of arrival of the/th pulse and x, is the measured TOA. The white noise term w, 
includes the effects of oscillator instability and deceptive jitter, which are added to the data at the 
emitter. The white noise term v, simulates the effect of measurement noise, which is added to the data 
by the receiver. To account for missing pulses that occur when the probability of detection is less than 
one or when the ES deinterleaver makes a mistake, different data sets were generated with between 
zero and 25% missing pulses. A single missing pulse is represented in the data by a missing PRI value 
followed by an unusually large PRI value. The large value is the sum of the missing PRI and the PRI 
that follows it. 
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FOURIER REPRESENTATION OF STAGGERED PRI SEQUENCE 

A staggered PRI sequence can be viewed as a discrete time series in which PRIs are plotted vs 
equally spaced pulse indices. A staggered PRI sequence is periodic, and each period contains an integer 
number of pulses. The sequence repeats in a deterministic manner. 

The Fourier representation theorem states that any periodic function can be expressed as a linear 
combination of sine and cosine terms plus a constant. The frequencies of the sine and cosine terms 
correspond to the different harmonics present in the function. 

A discrete time series can be represented by a finite number of harmonics. Specifically, if a 
discrete time series has period = p, the first harmonic has frequency lip and completes its cycle in p 
time periods. The second harmonic has frequency lip and completes its cycle inp/2 time periods. Ifp is 
even, at most/>/2 harmonics are required to represent the time series because the period corresponding 
to the (p/2)th harmonic is 2, which is the shortest possible cycle length. If p is odd, at most (p-l)/2 
harmonics are needed [3]. 

Therefore, a staggered PRI sequence can be represented exactly as follows: 

PRI(k) = PRI +ax cos (l%±k\ + bx sin (ln±-k 

+ 02 cos f 2JC-2-* I +ö2sin \2it^k 

+ 

+ amcos hn^k) + bm sin (2% *- k), 

where 

PRI is the mean PRI 

k is the index of the Mi pulse 

p is the period of the sequence 

at, s, and £,s are the Fourier coefficients, and 

fp/2 for/»even 
m = \ 

[0-l)/2   for p odd. 

The last sine term evaluates to zero when/» is even. 
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KALMAN FILTER MODEL FOR PRI SEQUENCE WITH KNOWN PERIOD 

If the period of the staggered PRI sequence can be determined with preprocessing, then the 
following Kaiman filter model can be used to predict PRIs: 

System equation: 9, = 6M +wt    wt ~ N(0,ow), 

Observation equation:   Yt=FtQt+vt    vt ~ N(0,av), 

where 

6, is the state vector, 

F, is the measurement matrix, 

Yt is the measured PRI, 

w, is the system noise, and 

v, is the measurement noise. 

The length of the state vector is equal to the period of the PRI sequence. Thus a «jporito^tagger 
sequence requires a Kaiman filter of order 64. The state vector contains the mean PRI followed by the 
Fourier coefficients for the PRI sequence. The measurement matrix is time-varying. It contains a 1 
foUowed by cosine and sine terms for all of the harmonics present in the PRI sequence. As an example, 
the state vector and measurement matrix for a PRI sequence with period - 5 is 

Qt=[pRi ax bx a2 b2 \, 

Fi = [l COS^TC-L/) sin^t) co^n^t) sin^/)]. 

The filter converges after processing one complete period of the PRI sequence if the first period of data 
does not have any missing or spurious pulses in it. 

Figure 2 illustrates the convergence of the Kaiman filter on the 14-position 5-level stagger 
sequlfe cLles represent actual PRIs. and the solid line represents predicted PRIs. Since the period 
of the sequence is 14, the filter converges after processmg the first 14 PRIs. 
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Fig. 2 —Kaiman filter convergence for 14-position, 5-level stagger 
(system noise = 1.0, measurement noise = 0.5, no missing pulses) 
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Figure 3 illustrates the convergence of the Kaiman filter on the 32-position, 16-level stagger 
sequence. Since the period of the sequence is 32, the filter converges after processing the first 32 PRIs. 
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Fig. 3 — Kaiman filter convergence for 32-position, 16-level stagger 
(system noise = 0.1, measurement noise = 0.05, no missing pulses) 

Specification of System Noise and Measurement Noise 

By definition, system noise is noise that is added to the data at the emitter. This type of noise 
includes deceptive jitter and oscillator instability. Measurement noise is added to the data at the 
receiver. However, in this application, all noise on the data can be treated as measurement noise, and 
the system noise variance in the Kaiman filter can be set to a very small value. The following 
paragraphs provide an explanation of why this can be done. 

In a Kaiman filter model, the observation at time t contains system noise that is integrated from 
time zero to time t. The following simple example illustrates this: 

System equation: xt=xt_x+wt    wt~N(0,ow) 

Observation equation:   y, = xt + vt       vt ~ N(0, ov). 

Therefore, the system equation propagates as 

x2=x0 + wl+w2 

i=l 

By using this expansion at each time t, the observation equation is given by 

yt = *0+X Wi+V'  ■ 
i=l 
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Since the system noise is integrated and the measurement noise is not integrated, it is necessary to 
distinguish system noise from measurement noise and specify them correctly. 

Similarly, in this application, the TOA measurements contain integrated system noise. The 
following cumulative jitter model is assumed for the TOAs when they are generated: 

TOAj = TOAj_x + PRIj + wj 

TOAx=TOA<i+PRIx+wx 

TOA2 = TOAQ + PRI^ + PRI2 +wx+w2 

TOA^TOA^ + ^PRIi+^i- 
i=\ 1=1 

The TOAs measured at the receiver have the form 

n n 

measured _ TOA„ = TOAQ + £ PRIt + ]T wt + v„ . 
1=1 1=1 

In this application, the Kaiman filter processes PRIs rather than TOAs. PRIs are computed as the 
difference between successive TOAs: 

measured _ PRIn = measured _ TOAn - measured _ TOAn_x 

= PRIn+wn+vn-vn„l 

Var{measured _PRIn) = a2
w + 2 * o\ . 

Since the measured PRIs do not contain integrated system noise, it is not necessary to distinguish 
between system noise and measurement noise in the Kaiman filter model. The system noise variance in 
the Kaiman filter is set to a small value to prevent the filter gain from going to zero. The remaining 
noise on the data can be treated like measurement noise. The measurement noise variance is estimated 
on line using Bayesian variance learning, as discussed below. 

Variance Learning 

The Kaiman filter can be modified to incorporate variance learning [4,5]. Variance learning is a 
Bayesian technique that is used to determine an unknown measurement noise variance from the data. 
The derivation relies on normal-gamma conjugate theory from which it is known that if a prior 
distribution is gamma and data are obtained from a normal distribution, then the posterior distribution 
will be gamma. 

A gamma distribution is assumed for the inverse of the unknown measurement noise variance. 
Data are obtained in the form of prediction errors that have a normal distribution. The posterior 
distribution for the inverse of the measurement noise variance is therefore gamma. As each pulse is 
received, the parameters of this gamma distribution are updated. The inverse of the mean of this 
distribution is used as an estimate of the measurement noise variance. 
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In this application, variance learning is especially useful since almost all of the noise on the data 
can be treated like measurement noise. The variance of the prediction depends on both system noise 
and measurement noise. Since system noise is very small in this case, the variance of the prediction 
depends primarily on measurement noise that is determined from the data. The Kaiman filter therefore 
provides an accurate value for the variance of the prediction, even when the amount of jitter on the data 
is not known ahead of time. This is important for sizing the jam gate correctly. 

Figure 4 illustrates variance learning on the 14-position, 5-level stagger sequence. Jitter with a 
variance of 1.0 and measurement noise with a variance of 0.5 was added to the TOA values when the 
data were generated. The total variance on the PRI values is 1.0 + 2*0.5 = 2. The variance of the 
prediction approaches the correct value of 2.0. 
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Fig. 4 — Measurement noise variance learning for 
sequence with total noise variance = 2 

Compensation for Missing or Spurious Pulses 

It is a requirement that the Kaiman filter make accurate predictions of the true PRI sequence in an 
environment with up to 25% missing pulses and possible spurious pulses. Missing pulses result in PRIs 
that are much larger than actual PRIs in the sequence, while spurious pulses result in PRIs that are 
much smaller than actual PRIs. These false PRIs produce very large errors if they are fed directly into 
the Kaiman filter. The problem is illustrated in Fig. 5 for the 14-position, 5-level stagger sequence. In 
this case, a single missing pulse was inserted into the data stream at about pulse number 25. It can be 
seen that this missing pulse is still causing significant prediction errors 100 pulses later. 

To compensate for missing or spurious pulses, the following procedure is used. At each iteration, 
the Kaiman filter makes a prediction with an associated variance. If the next received PRI does not fall 
within four standard deviations of the prediction, it is assumed to be a false PRI. It is not used to update 
the filter, and the next prediction is adjusted to compensate for the false PRI. For missing pulses 
(received PRI greater than the current prediction plus four standard deviations), the next prediction is 
the sum of two PRIs, and this cumulative prediction has an increased variance associated with it [3 4] 
For spurious pulses (received PRI less than the current prediction minus four standard deviations), 'the 
next prediction is the difference between the current prediction and the false PRI. The variance of this 
prediction is the same as the current prediction. Figure 6 shows the Kaiman filter performance for the 
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Pig. 5 _ Effect of a single missing pulse on prediction error 
(system noise = 1.0, measurement noise = 0.5) 
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Fig 6 — Performance of Kaiman filter with compensation for missing pulses 
(25% missing pulses, system noise = 1.0, measurement noise - 0.5) 

14-oosition 5-level stagger sequence with 25% of the pulses missing. Measured PRIs of about 700 
iccur when a stele pufse is rrdssing. Measured PRIs of about 1100 occur when two successive pulses 

riiK^ ais°rithm described ^ **foiiowing section mis m p    are 
missing from the first period. 

INITIALIZATION ALGORITHM 

A preprocessing routine is needed to determine the period of the PRI sequence andi to construct one 
complete period of uncorrupted data for filter initialization. It is assumed that a buffer of PRI 

measurements is available for preprocessing. 
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Although the goal is to determine the number of pulses per period, it is easier to first find the 
period of the sequence in milliseconds. This is because the number of pulses per period will vary when 
there are missing or spurious pulses, but missing or spurious pulses do not affect the length of the 
period in milliseconds. 

Once the period in milliseconds has been determined, the entire length of data in the buffer can be 
divided into periods and the periods overlayed. A pulse that is missing in one period will not be missing 
in all periods if enough data are available for preprocessing. From the overlayed data, the number of 
pulses per period as well as the sequence of PRI values can be identified. 

Searching for the Period 

If the period of a PRI sequence is T ms, then every PRI in a data set will repeat in approximately T 
ms with some variability due to jitter. Therefore, when there are no missing pulses, every PRI in a data 
set can provide an estimate of the period T. Starting successively at each PRI in the data set, the 
estimates are obtained by searching forward for similar PRI values in the sequence. When a similar PRI 
is found, the intervening PRIs are added to obtain an estimate of T. Figure 7 illustrates this search 
procedure. 

The forward search procedure will yield some estimates of T that are incorrect, as well as the 
correct estimates of T at each PRI. This is because the same PRI can appear more than once within a 
single period. However, the number of estimates at the correct value will always exceed the number of 
estimates at any given incorrect value. Similar estimates of Tare grouped together in bins. The bin with 
the maximum number of estimates contains the correct value for T. Figure 8 shows the results of 
binning for the 14-position, 5-level stagger sequence with no missing pulses. The sequence has a period 
of approximately 5 ms. Figure 9 presents the results of binning for the same sequence with 25% 
missing pulses. 

It is necessary to put a check into the algorithm to ensure that a multiple of T is not identified as 
the period of the sequence rather than T itself. This can happen because any sequence with period T 
also has period 2T, 3T, etc. Bins centered on multiples of T contain large numbers of estimates as well 
as the bin centered on T. 

PRIs 300 360 420 330 300 | 300 360 420 330 300! 300 360 

Fig. 7 — Search procedure for possible periods 
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Fig. 8 — Results of binning for a sequence with no missing pulses 
(eight periods of data, 14-position, 5-level stagger sequence) 
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Fig. 9 — Results of binning for a sequence with 25% missing pulses 
(eight periods of data, 14-position, 5-level stagger sequence) 

Determining the Sequence 

The PRI sequence is determined by first dividing the TOA data in the buffer into periods, using 
knowledge of T. A search procedure is used to find the first TOA in each period. This procedure takes 
into account the increasing variance of the TOAs from the beginning to the end of each period. 

Next, the periods are overlayed. TOA values beyond the first period are converted to values 
relative to the start of the period in which they are contained. Similar TOA values from each period are 
then grouped together in bins and averaged. Figure 10 illustrates the results of binning TOAs for the 
14-position stagger sequence with no missing pulses and eight periods of data. Figure 11 shows the 
results of binning for the same sequence with 25% of the pulses missing. Finally, the sequence of PRIs 
is obtained by taking differences between the consecutive, averaged TOAs. 
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Fig. 10 — Results of binning the relative TOAs with no missing pulses 
(eight periods of data, 14-position, 5-level stagger sequence) 
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Fig. 11 — Results of binning the relative TOAs with 25% missing pulses 
(eight periods of data, 14-position, 5-level stagger sequence) 

REQUIRED QUANTITY OF DATA 

The quantity of data required for the initialization algorithm to be successful depends on the 
percentage of missing pulses and the period of the stagger sequence. It is desirable to have the 
algorithm work with up to 25% missing pulses and with periods up to length 64. 

A rough estimate of the quantity of data required can be obtained by computing the number of 
periods of the sequence needed to ensure that at least two PRI values are measured in each stagger 
position. If the probability of detection equals one, two periods of the sequence are required. If the 
probability of detection is less than one, the probability of measuring two or more pulses in each 
stagger position is computed using the binomial distribution. For a 64-position stagger sequence, the 
probability is given by 
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prob- 
f     fn\ 

K    vOy 
(PdfQ-Pd)n- 

Kb 

^64 

(Pdfv-Pd) n-\ 

where n is the number of periods of the sequence, and 
pd is probability of detection. 

This expression is plotted in Fig. 12. From the figure it can be seen that, to ensure a high probability of 
receiving two or more measurements in every stagger position, nine periods of data are required when 
the probability of detection is 0.75 and six periods of data are required when the probability of 
detection is 0.90. 
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Fig. 12 — Required quantity of data for initialization of a 64-position stagger sequence 

SUMMARY 

An algorithm for tracking staggered PRI sequences has been developed. The algorithm has two 
parts: a preprocessing routine, and a Kaiman filter model based on the Fourier representation of the 
staggered PRI sequence. The preprocessing routine determines the period of the stagger sequence and 
constructs an uncorrupted period of data for Kaiman filter initialization. The Kaiman filter predicts 
pulse TOAs and generates the variance of each prediction using a Bayesian variance learning 
technique. 

The algorithm was tested using simulated data. Jitter, measurement noise, and random missing 
pulses were incorporated into the simulated data sets. Both the preprocessing routine and the Kaiman 
filter performed well with up to 25% missing pulses. 

In data sets with up to 25% missing pulses distributed randomly throughout the data set, usually 
not more than two or three adjacent pulses will be missing. Future work will address longer runs of 
missing pulses caused by multipath fading. It is important for the algorithm to continue working 
without reinitialization when fade periods are as long as 0.25 s. Conditions under which a track should 
be dropped will also be investigated. Finally, this report considered only staggered PRI modulation. 
Other types of modulation, including sinusoidal and random, will be addressed in a future report. 
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